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ABSTRACT
293/

The theory of atmospheric tides, as it has been developed for Earth's
atmosphere, is applied to the Martian atmosphere. For corresponding modes
of oscillation, equivalent depths are less in the Martian atmosphere than
in Earth's atmosphere. On the other hand, the eigenvalue corresponding
to the presumed Martian temperature distribution in the troposphere and
stratosphere is about 20 km, about twice the corresponding value on Earth.
These differences arise mainly from the different radii and masses of the
planets. Unless the temperature distribution at high levels on Mars has
a rather special form so that a second eigenvalue appears, no resonance
magnificaqion is to be expected. Tides in the Martian atmosphere might
arise from periodic temperature oscillations, induced either by surface
heating, or by radiative heating through deep layers of the atmosphere.
If there is no significant resonance, and unless these temperature oscil-
lations are much larger than presently believed, the resulting tidal

oscillations are unlikely to play any significant role in the circulation

of the Martian atmosphere. ~ SE1~
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SECTION 1

INTRODUCTION

The expression atmospheric tides is generally used to refer to

atmospheric oscil%ations whose periods are equal to or sub-multiples

of solar or lunar déy, regardless of whether the oscillations are
gravitationally or thermally excited. The theory of tides in the Earth's
atmosphere has a long history and has claimed the attention of such men

as Laplace, Kelvin, Rayleigh, Margules, Lamb, Chapman, Taylor, and Pekeris.
One reason for this interest in the relatively small oscillations involved
is the rather surprising observation that in our atmosphere the solar semi-
diurnal tide predominates over the lunar tide (with its stronger gravita-
tional excitation) and the solar diurnal tide (with its stronger thermal
excitation). Although all the details of this phenomenon are not clearly
understood, it now appears that the predominance of solar tides over lunar
is due to the importance of thermal excitation and that the relative
strength of the solar semi-diurnal oscillation results from a peculiar
response of our atmosphere to the periodic heating. There is no reason

to believe that the theory, which necessarily contains many simplifications,
is inadequate and one may apply it with reasonable confidence to the atmos-

pheres of other planets. The history and present status of tidal theory




has been reviewed recently by Siebert (1961), to whose work the reader

is referred for further details.

The planet Mars is one for which the application of tidal theory
appears to have some interest. The relatively large diurnal temperature
variation that is inferred for the surface of Mars raises the question
of the response thereto of the Martian atmosphere. Both Mintz (1961)
and Ohring and Coté (1963) have speculated on the possibility of an
important diurnal oscillation in the Martian atmosphere. The purpose
of this report is to investigate such a possibility with the aid of

standard tidal theory.

In full detail, the development of this theory is rather cumbersome.
Section 2, therefore, contains only a statement of the assumptions and
results. Siebert (1961), whose notation is principally used throughout,
has given all necessary details and appropriate references. The theory
gives rise to two ordinary differential equations, one of which is usu-
ally referred to as Laplace's tidal equation and the other of which we
may call the radial equation. Solutions of these equations for different
conditions, with reference to both Earth and Mars, are discussed in
Section 3. Finally, in Section 4, some numerical estimates for Mars are

presented.




SECTION 2
OUTLINE OF THE BASIC THEORY

2.1 COORDINATES AND BASIC NOTATION

In the development of tidal theory, spherical coordinates r, 8, @
are used with origin at the center of the planet and with r the radius
vector, @ the colatitude, positive southward from the north pole, and
@ the longitude, positive eastward. The corresponding wind components
are w, u, and v respectively. The pressure, density, and temperature
are denoted by p, p, T; the undisturbed values of these quantities by
P,» P> To; and the variations due to the tidal oscillation by &p, dp,

dT. Some other symbols are:

a, radius of the planet

W, angular velocity of the planet

g, acceleration of gravity on the planet

Yy = cp/cv, ratio of the specific heats of the atmosphere

K

(r - D/y
m, mean gram-molecular weight
z, height above the planetary surface

R, universal gas constant




H= RTo/mg, scale height of the atmosphere

X, velocity divergence

Q, scalar potential, describing the gravitational tide-producing force

J, heat added per unit mass and per unit time, describing the thermal
tide-producing force

2n/o, period of the oscillation

f=o0/2w
Other symbols will be defined as they appear.
2.2 BASIC ASSUMPTIONS

The following assumptions are made:

(1) TO varies with height in an arbitrary way that can be specified,
but does not vary with latitude or longitude (except insofar as small

periodic variations are imposed by the heating function J).

(2) P, and P, are related to To by the hydrostatic equation and the

equation of state for an ideal gas.

(3) 5p, 5p, T, u, v, w are small quantities whose squares and

products may be neglected.

(4) Ellipticity of the planet, vertical acceleration, viscous forces,
vertical variation of the radius vector, vertical variation of g, and

vertical variation of 00/dz are all neglected.




(5) All of the dependent variables and the functions & and J may
vary with z, 6, @, and t. However, it is assumed that these variations

are separable and may be expressed as

G(z, 6, 9, t) = Z Gn(Z) an(e) exp[i(sp + ot] (2-1)

n

where G stands for any of &p, 8T, dp, u, v, w, X,  or J and where s = 0,
1, 2, 3, .... . Obviously, since we are dealing with linearized equations,
there are many solutions of the type (2-1) (with different vélues of s and
0) and these solutions are additive. However, for convenience of notation,
we shall often use only the subscript n and not refer explicitly to the

”~

dependence of G and G on s and 0.
2.3 FORMAL SOLUTION

The mathematical solution of the problem leads to two ordinary
differential equations. One is called Laplace's tidal equation with
independent variable 6 and dependent variable @n, where @n = xn(a) = Jn(e).

It may be written
F(8 ) + 4a’w?® /gh_ = 0 (2-2)
n n °n

where the operator F is defined by

F 1 .;[ sin 6 9 s l: s +_1¢2+c052:>](23
- - S I -
sin & 06 (f2 - cosze) % (f2 - cosze) sinze £ - c052




and where hn is a constant with dimension of length and arises in a separa-

tion of variables.

The other differential equation is called the radial equation and
in its basic form has z as independent variable and Xn as dependent variable.
It also involves terms in Jn’ which may be regarded as a specified function.

This equation is greatly simplified by the following substitutions:

2 /
x = fd—z, (2-4)
5 H(z )
yn(x) exp(x/2) = Xn(z) - K Jn(z)/g H(z) (2-5)

With these, the radial equation becomes

Kk J (x)
7ghn

exp(-x/2) (2-6)

dx n

P od (e s ) -

All of the other dependent variables can be written in terms of @n(e)

and X). The expressions for u v w and & are:
yn( ) P 2’ Vn’ Y2 Pn

7ghn exp(x/2) dyn

yn> <d®n s _cot O > }
u = _ _n + ® Jexpli(sp + ot)] (2-7) |
n 4aw2(f2- cosze) dx 2 a9 £ "

vn = 17g121n ZXP(X/z) <dyn _ ﬁl) (co; e djg + .S 0 ) exp[i(sq) + O't)] (2-8)
haw” (£°- cos?6) dx 2 sin 6 "n




-

n

. dy
H 1 .
¥ =Y g %t 7By exRC/D) [a" * sz ) 3%1 6, expli(sp + ot)] (2-9)

Po(o) Qn 7hn dyn In
Spn = H(x) - —g exp (-x) +-;Er exp(-x/Z)CEE- - 75) Gn expli(sp + ot)] (2-10)

2.4 BOUNDARY CONDITIONS AND FURTHER PROCEDURES

The study of atmospheric tides involves the solutions of (2-2) and (2-6)
under various physical conditions. Solutions of Laplace's tidal equation
must satisfy the conditions that u vanishes at the poles and is single-
valued elsewhere. Solutions of the radial equation must satisfy the condi-
tion that w,o= 0 at the ground and also a second boundary condition that
we shall discuss further in Section 3. The quantity hn plays a key role
in these solutions. Because it arose as a separation constant, it must
have the same value in (2-2) as in(2-6), for any particular solution of the
type (2-1). 1Its possible values are limited in one way or another by the
boundary conditions and other physical conditions of the problem under

consideration.

Although we are primarily concerned with forced oscillations; it is
useful to consider first the problem of free oscillations (Qn = Jn =0).
In this case, one may start with the homogeneous counterpart of (2-6). A

vertical temperature distribution is assumed, which specifies H(x). For

temperature distributions similar to that in the Earth's atmosphere, and




for the appropriate boundary conditions, the homogeneous form of (2-6) is

soluble only for ome or two values of hn. We shall refer to these as

atmospheric eigenvalues and use the symbol h for them.

A

Corresponding to each atmospheric eigenvalue h, there are formally
a doubly infinite number of solutions of Laplace's tidal equation (2-2).
These correspond first of all to different values of s (wave number). For
each s there is an infinite number of solutions (modes of oscillation),
each with its own period. The period for a given mode enters through the

A

parameter f and depends of course on h and s.

Although we are not concerned here with free oscillations, the values
"~
of h corresponding to a given temperature distribution have played an

important part in the discussion and interpretation of atmospheric tides

for reasons that will be seen below.

In the case of tidal oscillations, the physical constraints are dif-
ferent. We are interested in specific periods equal to 1-1 of the solar
(or lunar) day, (A =1, 2, 3, ....), and therefore in particular values
of £f. For an oscillation characterized by particular values of A and s,

there are formally an infinite number of solutions of (2-2), each of which

S

may be written @x n
2

(n=1, 2, 3, ....). Corresponding to each solution

is a value of h, called an equivalent depth. The value of an equivalent

depth hi n depends on A, s, and n but not on the vertical temperature
b .
distribution. A solution of (2-6) is then sought for the equivalent depth

corresponding to the mode of oscillation under consideration. Contrary




to the case of free oscillations, solutions of (2-6) are not restricted
to values of h corresponding to the atmospheric eigenvalues, because

. . i 5
either Qn or Jn is different from zero. However, if an oscillation @l n
b}

. s
has associated with it an equivalent depth hl n
?
"

one of the atmospheric eigenvalues h, and if further the corresponding

that is nearly equal to

i,n (or J;,n) is not too small, then one may expect a

forcing function 0
large amplitude for that mode of oscillation. Such a phenomenon is
referred to as resonance. There are various ways of quantifying this

rather vague definition of resonance, and we shall return to this in

Section 4.




SECTION 3

METHODS AND RESULTS OF SOLVING THE DIFFERENTIAL EQUATIONS

In the last part of the previous section we discussed qualitatively
the procedures for investigating free or forced oscillations. Here we
shall go into more detail with respect to tidal - oscillations, adapting

solutions that have been obtained for our atmosphere to that of Mars.

3.1 LAPLACE'S TIDAL EQUATION, EARTH'S ATMOSPHERE

Laplace's tidal equation (2-2) does not involve the thermal structure
or composition of the atmosphere and its solutions are easily applicable
to the Martian atmosphere. These solutions are called Hough's functions :
and have the form of a series of associated Legendre functions of argument

L = cos 8. Specifically,

& L) = ) &l P (3-1)
v
where n=1, 2, 3, .... for s =0
n=s,s+1, s+2, .... for s # 0
v=1, 3, 5, .... for s = 0, n odd
v=2, 4, 6, .... for s = 0, n even

10




v=s,s+2,s+4, .... for s # 0, (n - s) even

<
I

s+1, s+3, s+5, .... for s # 0, (n - s) odd

S,V
A;n

for each A, n, s are rather time-consuming. Siebert has given results

The determination of hi n and computation of the coefficients C
?
for modes of oscillation that are of interest in the Earth's atmosphere.
Although these will not be reproduced here, we show as an example some
of the results for an oscillation of period one half a solar day when

s = 2, which is the primary oscillation in the Earth's atmosphere:

s =2, A=2, f=.99727, ¢ = 1.4544 x 10" % sec” !

n=2, by ,=7.85Im
2 2 2 2 -3 2
©; , = Py - 0.339 P +0.041 By - 2 x 107° Pg + ...
n=4, h> = 2.11 kn
> by g
2 2 2 2 2 2
®) 4 = 0.202 P, + P - 0.819 Py + 0.24 P - 0.04 Py + ...

From the properties of the Legendre functions and the specifications
of v listed under (3-1), it is apparent that Hough's functions are sym-
metric about the equator when (n - s) is even and anti-symmetric when (n - s)
is odd. Only the first two symmetric modes are given above for s = 2, A = 2,
Usually, but not always, the leading term in a Hough's function is the one
s

for which v = n. For given values of s and A, hk n decreases as n increases.
H

11




These general properties of the solutions will suffice for our further

discussion.
3.2 LAPLACE'S TIDAL EQUATION, MARTIAN ATMOSPHERE

For the Martian atmosphere, we are interested in oscillations of
period one (Martian) solar day or a sub-multiple thereof. This period
enters into Laplace's tidal equation only through the parameter f = o0/2w.

/
By definition, 0 = 2rxA/D and w = 2x/D where D is the length of a solar

/ /
day and D is the length of a sidereal day. Accordingly, f = (2/2)(D /D).

/ /
For our atmosphere D /D = .99725, while for Mars D /D = .9985. For our
purposes this is a negligible difference and we may assume that the

Hough's functions for a kfl oscillation are the same in both atmospheres,

The equivalent depth corresponding to a given mode of oscillation
enters only in the factor 4a2w2/ghn. We may assume that this factor is
essentially the same in the two atmospheres for a given mode of oscil-
lation. Nevertheless, values of the equivalent depth hn differ appre-
ciably because the planetary constant azwz/g differs between Earth and

Mars, Specifically

s _ s
hl,n (Mars) = .74 hk,n (Earth)

S

Table 3-1 gives values of h
A,n

for the two planets for some modes of

oscillation that are of interest.

12




TABLE 3-1

Values of h; n for Earth and Mars.
?

hi,n (Earth) hi,n (Mars)

(km) (km)
0, 2, n=2 8.85 6.5
0, 2, n=4 2,21 1.6
1, 1, n=1 0.63 0.47
2, 2, n=2 7.85 5.8
2, 2, n= 4 2.11 1.6
3, 3, n=3 . 12.89 9.5
3, 3, n=4 7.66 5.7

«
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3.3 THE RADIAL EQUATION, EARTH'S ATMOSPHERE

Let us consider first the homogeneous counterpart of (2-6), since
its solution reveals the atmospheric eigenvalues and furthermore is re-

quired in the general solution of (2-6). This is

2
4y, 1 4 dH(x) |
2 {1 ~ e (koo + S| ya00 = 0 -2

This equation is to be solved subject to the boundary condition that

W= 0 at x =0, v being given by (2-9). A second boundary condition
has been attained in a variety of ways by different authors. A natural
condition to impose is that the kinetic energy of tidal motion per column

of unit cross section shall remain finite. This reduces to the mathemat-

ical expression

xliﬁw [yn(x) . x%} = 0 (3-3)

However, for certain models of the vertical temperature distribution, this
condition gives the result that there can be no oscillations for values of
hn below some critical value. This result is not verified by observation
and is undoubtedly due to the failure of certain assumptions (for example,
neglect of heat conduction and non-linear terms) at very high levels.
Therefore it is customary to admit solutions that do not satisfy (3-3),

but instead give an upward flow of energy (Wilkes, 1949) or a zero vertical

flow of energy (Siebert, 1961) at high levels.

14




In treating Equation (3-2), one must first specify a vertical temp-
erature distribution to define H(x). In the general case, (3-2) is then
solved numerically. Functional solutions are possible for an isothermal
atmosphere or for an atmosphere with linear lapse rate or for a special

exponential atmosphere to be described later.

The history of studies of (3-2) is of considerable interest and has
important implications for a study of the Martian atmosphere. Pekeris
(1937) first pointed out that for a vertical temperature distribution
that appeared reasonable at the time our atmosphere might have two eigen-
values, one near 10 km and another near 8 km. The first had been inferred
by Taylor (1929) from the observed velocity of propagation of the pressure

wave generated by the Krakatoa eruption. The second agreed closely enough

2
2,2

portant resonance effect. Weekes and Wilkes (1947) (see also Wilkes,

with the equivalent depth for the © oscillation to suggest a very im-
1949) pursued this idea with more extensive computations. They also
pointed out that the eigenvalue of about 10 km is associated with the
temperature distribution in the upper troposphere and lower stratosphere
and is little affected by conditions at higher levels. The second eigen-
value of about 8 km is associated with the temperature distribution in the
upper stratosphere and mesosphere. Figure 1 shows, after Wilkes (1949),
some vertical distributions of temperature that would explain the ob-
served @2 oscillation as an oscillation forced to an important degree

2,2

by the solar gravitational tidal force and magnified by resonance.

15
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Figure 1. Vertical distributions of temperature in our atmosphere that
would provide sufficient resonance to explain the solar semi-
diurnal tide as a gravitational oscillation. Any profile of
the form A B C D' E' F' G (where D' lies between C and D, E'
lies vertically above it on the indicated curve, and F' lies
between F and G) would suffice. (After Wilkes, 1949).
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The trouble with this attractive explanation, which was widely
accepted in 1950, is that temperature data obtained with the use of
rockets in recent years fail to verify the required temperature distri-
bution. Computations by Jacchia and Kopal (1952)Aand by Sen and White
(1955) show that our atmosphere with its observed temperature distribu-
tion does not amplify the solar gravitational tide to anywhere near

the degree required by observation.

In this situation, the explanation of the relatively large 83,2
oscillation has been sought in terms of a thermal tide, driven by peri-
odic heating of the atmosphere and requiring only a moderate amount of
amplification. Mathematically, this requires a description of the heat-
ing function in terms of Jn that appears in Equation (2-6). The general
solution of (2-6) then includes a particular solution as well as the

solutions of the homogeneous Equation (3-2). In the general case, the

entire solution may be obtained numerically.

Various heating models have included surface heating communicated
to the atmosphere by eddy conduction (Sen and White, 1955), absorption of
solar radiation by water vapor (Siebert, 1961) and absorption of solar
radiation by ozone (Butler and Small, 1963). Although serious problems
are involved in specifying the heating functions, these mechanisms appear
to be capable of explaining the magnitudes of the observed tides. It
seems quite likely that a satisfactory explanation is presently evolving

along these lines.

17




3.4 THE RADIAL EQUATION, MARTIAN ATMOSPHERE

In applying tidal theory to the Martian atmosphere, one is faced
first of all with the problem of estimating a vertical temperature distri-
bution. Naturally, there is a great deal of uncertainty about this factor.
However, various estimates have been made on the basis of radiative con-
siderations. Unless the composition of the Martian atmosphere is consider~
ably different than is presently inferred, especially in amounts of carbon
dioxide, water vapor, and ozone (or by containing an unsuspected constit-
uent that is radiatively active), these estimates must establish the
broad outlines of the distribution. A recent temperature profile prepared
by Rasool (1963) is shown in Figure 2, being a composite of estimates by

Arking (1962) and Chamberlain (1962).

On the basis of our experience with the terrestrial atmosphere, we
should expect to find an eigenvalue associated with the temperature decrease
in the troposphere and the low temperature in the stratosphere. Another
might be associated with the rather steep lapse rate just above 100 km and
the temperature minimum at the mesopause. However, arguing again on the
basis of our terrestrial experience, we could expect the latter to depend
rather critically on the details of the temperature distribution near the

mesopause and these are certainly not known.

For a first appraisal of the Martian tidal problem, it would seem
reasonable to consider only the effects of the troposphere and stratosphere,

which in our atmosphere give rise to the eigenvalue of about 10 km. For

18
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Figure 2. Possible vertical distribution of temperature in the Martian
atmosphere according to Rasool (1963).
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this first appraisal, and especially in view of the large degree of uncer-
tainty about the actual Martian temperature distribution, it is also
reasonable to use a rather simple model that is capable of yielding ana-
lytic solutions. In this way the effects of varying environmental para-

meters can be easily studied.

Such a simple model is available (Siebert, 1961) in the form of a

special exponential temperature distribution. Specifically, let
Tox) = [T (0) - T (=) | exp(-kx) + T (=) (3-4)

in which To(o) and To(m) are adjustable constants which correspond in the
model to surface temperature and temperature of the isothermal top. This
distribution makes it possible to derive relatively simple expressions for

the study of all relevant tidal problems.

Figure 3 shows a few of the estimates that have been made of the
vertical temperature distribution in the lowest 40 km of the Martian atmos-
phere. Figure 3 also shows three vertical distributions of temperature
according to (3-4) for T (o) = 230°K and To(w) = 160°K and 80°K. For
further orientation, Figure 4 shows the temperature distribution in the
terrestrial troposphere and stratosphere and a representation of it by
(3-4). 1In the case of our atmosphere this representation is adequate to
describe the resonance characteristics associated with the eigenvalue of
abouF 10 km. We should expect that the same will be true in the Martian
atmosphere, as long as this eigenvalue does not need to be very accurately

known.

20
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The eigenvalue of the Martian atmosphere for a temperature distri-
bution like (3-4) is easily determined. Substituting (3-4) in (3-2)

gives

dy l
n 1 4KH (=) =
5 "% - h ]yn =0 . (3-5)

Assuming for the moment that hn > 4kH(») we note that the solution that

satisfies the upper boundary condition (3-3) is

4iKH ()

h (3-6)
n

N
o
)

Y (x) = A exp <-

At the lower boundary, set wo= 0, using for v the expression (2-9) with
Qn = 0. This implies a free oscillation for which hn is an eigenvalue h.

The result is

12 (o)
H(o) - KH(%) ~ mg T (0) - KT_()

~ 2, .
h = H (o) R

(3-7)

N

Note from this solution that h > 4kH(®) if H(o) > kH(®), which is true

for all the atmospheres we shall consider.

If, as is generally assumed, the Martian atmosphere is predominantly
nitrogen, then its mean molecular weight is slightly less and its specific
heats (per unit mass) slightly greater than those of our atmosphere. How-
ever, we shall assume throughout that R/m, cp and cv have the same values

in the two atmospheres. The acceleration of gravity is known to be

23




considerably less on Mars and we use the value 3.8 x 102 cm sec-z°
Table 3-2 gives some eigenvalues for the Martian atmosphere when its
temperature distribution is represented by (3-4) and various values of

To(o) and To(w) are assumed.

One sees immediately that, owing to the small value of g on Mars,
these are larger than their terrestrial ccunterpart, which is about
10 km. We noted earlier (Table 3-1) that the equivalent depths of the
periodic oscillations are smaller than their terrestrial counterparts.
We can draw two conclusions from these preliminary results before going

on to more detailed considerations:

(1) Resonance effects due to this eigenvalue are smaller in the

Martian atmosphere than in Earth's.

(2) The exact vertical temperature distribution assumed for the
Martian troposphere and lower stratosphere is not a critical factor in
order-of-magnitude tidal studies. This is because the oscillations of
interest have periods so far removed from the probable free period of the
atmosphere that their behavior is not very sensitive to the exact value

of that free period.

It is important to note again for emphasis that the above conclusions
refer to a simplified temperature distribution capable of exhibiting only
one eigenvalue. Should the temperature distribution at high levels over
Mars be such that a second eigenvalue appears, they would not necessarily
apply to this second eigenvalue. A better knowledge of the Martian tem-
perature distribution as well as more elaborate computations would be re-

quired to test this possibility.
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TABLE 3-2

Values of the atmospheric eigenvalue (in km) for the model
Martian atmosphere and various values of To(o) and To(w)

T (=) 160°K 120°K 80°K
T (o) o
[o]
250°K 23.2 22.0 20.9
230°K 21.8 20.5 19.4
210°K 20.4 19.0 17.9
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SECTION 4

THE AMPLITUDES OF TIDAL OSCILLATIONS
IN THE MARTIAN ATMOSPHERE

4,1 THE SOLAR GRAVITATIONAL TIDE

The solar gravitational tide in the Martian atmosphere must be
completely insignificant unless there is a high degree of resonance for
one of the oscillations. We have already noted above that such resonance
is not to be expected from the principal atmospheric eigenvalue. The
purpose of the present discussion is to make these assertions more quan-

titative.

With Jn =0, (3-6) is a solution of (2-6) that satisfies the upper
boundary condition (3-3) when hn > 4kH(»). For hn < L4kH(%), (3-3)
cannot be satisfied. Following Siebert, we take as a solution in this

case

yn(x) = A (cos % Enx + sin % Enx) (4-1)

where

AT (GO

(4-2)

™
I
o
]
-
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This solution gives zero vertical flow of energy at high levels and pro-
vides continuity at the point in the resonance curve (to be defined

below) where the two solutions (3-6) and (4-1) join.

Application of the lower boundary condition allows the An in either

(3-6) or (4-1) to be determined. The result may be written

2icQ (o)
A = Lt
n ygl2H(0o) - hn(l + bn)]

(4-3)

where

- _ LkH(®)

bn 1 = = Bn for hn >  4kH()
- 4kH () _

bn hn -1=- B for hn <  4kH(>)

A convenient way to describe a tidal oscillation is in terms of the

pressure oscillation at the ground. I can be shown from (2-9) and (2-10)

that

8p_(0) =L p_(0)y (o) - (4-4)

Therefore in the present case,

2 Qn(O)oo(O)H(O)

p,(0) = - Ty - h (1 +5)

(4-5)
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The "equilibrium tide" 6pn(o) is given by the first term of (2-10) as
- po(o) Qn(o)a This is used as a unit to express the pressure oscillation
that finally appears in the atmosphere. If Mn represents the resonance

effect,

6pn(o) 2 H(o)

g;;'(s') 2 H(o) - hn(l + bn)

=
il

(4-6)

A plot of Mn as a function of hn is called a resonance curve. In place

of such a curve, which would show strong magnification only near 20 km

for the present simple model, Table 4-1 gives the values of Mn for oscil-
lations whose equivalent depths are listed in Table 3-1. For this purpose,
we take To(o) = 230°K and To(w) = 120°K; but other choices within what
appear to be reasonable limits would make no appreciable difference in

the results. The magnification factor is near 1 for all oscillations.

In the earth's atmosphere corresponding values for the lunar tides are of
the same magnitude (élthough somewhat larger); and that tide, involving
much greater gravitational force than the solar tide on Mars, is only
barely detectable. It is therefore clear, as anticipated, that a notice-

able Martian tide, if there is any, must be thermally driven.
4.2 THE THERMAL TIDE, SURFACE HEATING

To study the thermal tide due to surface heating of Mars, we first

express the heating function J in terms of the temperature variation by

_ . o1
J =St (4-7)
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TABLE 4-1

Amplitude of the gravitational surface pressure oscillation on
Mars for model atmosphere with To(o) = 230°K and To(w) = 120°K

M %

(km)
=0, A=2,n= 2 6.5 1.0
=0, A=2,n=4 1.6 0.94
=1, =1, n=1 0.47 0.96
=2, A=2,n= 2 5.8 1.0
=2, A=2,n=4 1.6 0.94
=3, A=3,n=3 9.5 1.2
=3, =3, n=4 5.7 1.0
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where T is that part of the observed temperature variation due to the
heating. That is, it does not include adiabatic temperature changes that
might be associated with a resulting tidal oscillation. For our purposes,

the distinction is unimportant.

If we write T as

T = X Tn(Z) ®n(9) expli(sp + ot)] (4-8)
n
then
J (2) = cpiUTn(Z) = % 7,(2) - (4-9)

Let us assume, as is customary in studies of the Earth's atmosphere,
that the diurnal variation of temperature at the surface is known and that

the temperature variation at higher levels results from a vertical trans-

fer of heat by eddy conduction. Thus

J=c K=" (4-10)

- X "a " 0 . (4-11)
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Here K is a coefficient of eddy conduction which will be assumed constant.
This is a rather crude assumption, but should suffice to give answers
with the correct order of magnitude. The solution of (4-11), with appro-

priate boundary conditions, is

Tn(Z) = Tn(O) exp[-kz/H(o) ] (4-12)

where

k = H(o) Y % exp(ni/4)

In Equation (2-6) it is necessary to express Jn as a function of x

and not z. In the present model atmosphere,

2

- H(o) - H(») |

p: 1 - exp(-kx)] + H(®)x .

Since K < 1 and for the part of the atmosphere that is heated by the

~

ground x << 1, we can write exp(-kx) = 1 - kx and it follows that
Tn(x) = Tn(O) exp (-kx)

Therefore according to (4-9), the appropriate heating function is

L = iR ]
Jn(x) = e Tn(O) exp(-kx) . (4-13)
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Inserting (4-13) in (2-6) gives finally

2
d Yn 1 K H(%) icH(o) 1 + 2k)x
ol [1 ] A_Ahn_ Yo 7 T (o) (@ P - | 1

The homogeneous part of the solution of (4-14) has already been given

by (3-6) or (4-1). A particular solution is

- 2

;;n = Bn exp l: - M}fjl (4-15)

where

io H(o) Tn(o)

ny T (o) [(1 + Kkh + « H(=)] (4-16)

B

It is next necessary to determine the constant An by application of
the boundary condition at the ground. When this is done and the general

solution is used to determine 6pn(o), one obtains

po(o) H(o) hn(l + 2k - bn) Tn(o)

Bp,(0) = - T_()1Z H() - h_(1 ¥ 5)1[(1 + Okh_+ K B® ] * (4-17)

For computational purposes, this can be simplified considerably. For
all situations that will be investigated k >> 1, 2k >> bn’ and k2hn >> ;

K H(»), so that
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- 2 p (o) 7 (0) ”
8pn(o) = To(o)[Z H(o) - hn(l + bn)] T exp(3ni/4) . (4-18)

For all oscillations listed in Table 4-1, and for any values of H(o)
and H(») that appear reasonable, the factor in square brackets in the
denominator of (4-18) has a value in the neighborhobd of 30-40 km. There
is therefore no preferential excitation of a particular period and one
would expect the diurnal oscillation to predominate simply because the
amplitude of the diurnal temperature oscillation is in all likelihood
larger than that of the semi-diurnal, ter-diurnal, etc. For this oscil-
lation, O = 7x 10_ssec_1. Taking K = 105cmzsec-1, which would be a rather

large average value of K for our atmosphere, one gets from (4-18) the

approximate relation

dp (@) . 1 7,00
p.(0) 75 T_(0) - (4-19

For example, if fhe amplitude of the diurnal temperature variation
near the equator and at the ground is 30°C (Ohring, Tang, and DeSanto, 1962),

then 6pn(o)/po(o) = 1/600 which gives Spn(o) £ 0.1 to 0.2 mb for the gener-

ally accepted surface pressure of something near 100 mb.

Relative to surface pressure, this amplitude of the diurnal pressure
oscillation on Mars is of the same order of magnitude as the amplitude of

the observed semi-diurnal oscillation on Earth. It is small enough to
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indicate that a thermal tide on Mars driven by surface heating is not an
important factor in the circulation of that planet. It is unlikely that
the estimates of Tn(O), K, and the denominator of (4-18) which lead to this
conclusion are sufficiently inaccurate to invalidate this general result,
It might, however, be incorrect if the temperature distribution on Mars
were such as to give a second atmospheric eigenvalue rather close to one

of the equivalent depths listed in Table 3-1.
4.3 THE THERMAL TIDE, ATMOSPHERIC ABSORPTION

There is every indication that the observed solar tide in our atmos-
phere is driven principally by heating of the atmosphere caused by absorp-
tion of solar radiation by water vapor (Siebert, 1961) or by ozone (Butler
and Small, 1963). Aithough the amplitude of these thermal effects is small
relative to temperature variations near the surface, the latter extend only
through the lowest several hundred meters of the atmosphere and thus have

less effect.

Until the composition of the Martian atmosphere is known with more
reliability, it is not possible to draw conclusions about direct solar
heating. Water vapor and ozone are known to be less abundant than in our
atmosphere (Ohring, 1963), but only reasonable upper limits can be spec-
ified. The present study of this effect will be confined to the discus-
sion of a solution given by Siebert for a temperature variation whose

vertical distribution is unspecified.
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(4-9), the radial equation (2-6) becomes, for the

model atmosphere being considered,

d7y -
5 - % <1 - 4k H}(ln)> yn(x) = Cn Tn(x) exp(-x/2) (4-20)

where

As before the homogeneous part of the solution of (4-20) is given by (3-6)
or (4-1). Complete solutions of (4-20) corresponding to (3-6) and (4-1)
respectively and satisfying the upper boundary condition are:

c

X
yn(x) = An exp(-an/Z) +-§E exp(an/Z)L/pexp(-an/Z)exp(-x/Z)Tndx -

n
0

(4-21)

x
- eXP('BnX/Z)b/\eXp(an/Z) exp(-x/2) Tndx

Enx Enx 2Cn Enx X Enx
yn(x) = An cos > + sin 5 + —— | sin —i-h/\cos - exp(-x/Z)Tndx -
Bn I
(4-22)
B f Bx
- cos —5— sin —— exp(-x/2) TndX
[>]

35



The arbitrary constant An can be determined from the lower boundary
condition, and the expression for the amplitude of the surface pressure

oscillation is

- 2 po(o) H(o)h/jfn(x) exp(-x/2) Tn(X) dx
o

5p_(0) = , (4-23)
To(o)[2 H(o) - hn(l + bn)]
where
fn(x) = exp(-an/Z) . for hn > 4k H(®)
B x B x
fn(x) = cos —>- + sin - for hn < 4k H(®)

For the oscillations that are likely to be important and for reason-
able values of H(o) and H(®), the factor 2H(o)/[2 H(o) - hn(l + bn)] is

of order of magnitude 1. Therefore the equation analogous to (4-19) is

dp (0)
p, (o) =

- Toto) b/\fn(x) exp(-x/2) Tn(x) dx . (4~ 24)
0

The integral represents the contributions of temperature variations
caused by diabatic processes at all levels, weighted in a certain way

that depends on the particular model atmosphere and oscillation under
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consideration. Although a numerical application of (4-24) to the Martian
atmosphere is probably unjustified at present by our lack of knowledge of
the temperature variation, nevertheless the vertical variation of the
weighting function fn(x) exp(-x/2) for various oscillations is of some

1

interest. Figure 5 shows this for the 61 1 and @g 2 oscillations (for
’ ?

the model atmosphere with To(o) = 230°K and To(w) = 120°K)

Of special interest is the behavior of fn(x) exp(-x/2) for A =1,
s =1, n= 1. This function changes sign at about 17 km and again at about
37 km. This behavior indicates qualitatively that if heating took place
throughout a deep layer of the Martian atmosphere, as might conceivably
happen if ozone is present (Ohring and Coté, 1963), then its effect in
exciting the 81

1,1

lation effect. On the other hand, the weighting factor for the ®§ 2
bl

oscillation would be inhibited by the resulting cancel-

oscillation retains the same sign to over 50 km; and if there were an

appreciable value of T through a deep layer of the atmosphere the semi-

2

2,2

diurnal oscillation might be preferentially excited. Although the details

are different in our atmosphere, this is the sort of explanation that is

currently emerging for the relatively large @; 2 oscillation in our atmos-
?

sphere (Butler and Small, 1963).

An order-of-magnitude assessment of the effect of atmospheric heating

may be obtained by assuming that Tn(x) has some constant value in the

region between the ground and an upper level x. Then for the solution

given by (4-22), which must be used for all the oscillations listed in
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40
30:—
20;
|
O_
Figure 5.

-0.8 -0.4 0 0.4 0.8 1.2
WEIGHTING FACTOR

Variation with altitude of the weighting factor for the heating
function. Full curve is the weighting function for a diurnal
oscillation, A = 1, s = 1, n = 1. Dashed curve is the weighting
function for a semi-diurnal oscillation, A= 2, s = 2, n = 2.

38




Table 3-1 when T°(°°) has reasonable values,

2

x (a¥)
Tnffn(x)exp(-x/Z)dx = 2 [Bn + 1] + 2 f.xz -x/2) [(Bn - l)sin %

o Bn+1 Bn+1

" B
- (Bn + 1> cos ——tzl—]

For To(°°) = 120°K, En = 4,63 for A=1, s

1]
e
=]

I

s =2, n= 2; and§n=.33fork=3,s=3,n=3.

in (4-25) is neglected, since it can hardly change

of the effect, (4~24) gives

5Pn(°) = - 1 —'—-Tl 1 for A

P, (o) 2 To(°)
2 2

dp, ,(0) 2,2

L - Jt I for A
po(O) To(°)
3 3

By 3(0) 5 T3 4

—_—2 = S 2 for A
po(O) 2 TO(O)

(4-25)

1; . = .90 for A = 2,
n
If the second term

the order of magnitude

=1, s =1, n=1
=2,8=2,n=2
=3,s=3,n=3




I

Although these relationships represent very crude approximations
they show when compared with (4-19) that a temperature oscillation
distributed evenly through the vertical extent of the atmosphere is
several tens or a few hundred times as effective in inducing a tidal
oscillation of surface pressure as is a surface temperature oscillation
whose effects are spread upward by eddy conductivity. If the former
had an amplitude near the equator of as much as 1/2°C, it would be com-

petitive with th+ latter.
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SECTION 5
SUMMARY AND CONCLUSIONS

This report has reviewed the elements of tidal theory as developed
for the Earth's atmosphere and discussed the application of this theory
to the Martian atmosphere. This theory leads to two ordinary differen-
tial equations, Laplace's tidal equation and the radial equation. Both
contain a constant h, which arises in the separation of variables in an

earlier partial differential equation.

In the study of tidal oscillations, one first specifies a period
which is equal to or a submuitiple of the solar day ( in our atmosphere
one is also interested in periods similarly related to the lunar day,
but this has no application to Mars). For the specified period and a
specified wave number, Laplace's tidal equation has a series of solutions
in the form of Hough's functions, with each of which is associated a par-
ticular value of h, called an equivalent depth. Each of these solutions
is spoken of as a mode of oscillation and describes the latitudinal
behavior of the oscillation. Because the ratio of the length of the solar
day to the length of the sidereal day is essentially the same on Mars as

on Earth, a given mode of oscillation has essentially the same form in
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the two atmospheres. On the other hand, the equivalent depth correspond-
ing to a given mode of oscillation is less on Mars than on Earth because

of differences in radius and mass of the planets.

In the case of free oscillations (not gravitationally or thermally
forced), the radial equation is soluble for only one or two values of h,
which are spoken of as eigenvalues. The number and magnitude of the
eigenvalue(s) depend on the average vertical temperature distribution.
The Earth's atmosphere has only one such eigenvalue with a value of about
10 km. The Earth's atmosphere would have a second eigenvalue of about
8 km if the temperature near the stratopause were as high as was once
thought likely. The temperature distribution in the Martian atmosphere
is not well known. The temperature is believed to decrease upward, more
rapidly near the surface than at higher levels. For a model atmosphere
embodying these features, the Martian atmosphere also has one eigenvalue
of about 20 km. This value does not depend very critically on the exact
temperatures that are assumed. A second eigenvalue might arise if the
temperature distribution at still higher levels were of a rather special

character, but this possibility has not been explored.

The importance of the eigenvalues in tidal theory is as follows:
if an excited mode of oscillation happens to have an equivalent depth
whose value is very close to one of the eigenvalues, then that mode will
be greatly amplified by resonance effects. A comparison of the equivalent
depths on Mars for modes that might be excited by solar heating with the
eigenvalue inferred for the Martian atmosphere indicates that no resonance
magnification is to be expected.
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Tidal oscillations on Mars might arise from the rather large diurnal
temperature variation near the surface that is inferred from theory and
observation. This possibility has been considered, and it appears highly
improbable that the amplitude of the resulting diurnal surface-pressure
oscillation (relative to the total surface pressure) exceeds the amplitude
of Earth's semi-diurnal oscillation. If this conclusion is correct,
tidal oscillations arising from this cause are not likely to play any

significant role in the Martian general circulation.

Tidal oscillations might also arise from diurnal or semi-diurnal
temperature oscillations caused by periodic radiative processes occurring
through deep layers of the Martian atmosphere. In our present state of
knowledge about the composition of the Martian atmosphere, one cannot be
sure about the amplitude of such temperature oscillations, but they are
probably too small to excite significant tidal motions. 1If the atmos-
phere should contain ozone in amounts greater than now suspected (or
any other gas that absorbs significant amounts of solar radiation), then

this tentative conclusion would have to be re-examined.

Thus, in the context of present inferences about temperature and
composition of the Martian atmosphere, there is no reason to expect that

tidal motions play an important role in the meteorology of Mars.
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